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A convergence theoi‘y for a class of

quasi-Newton methods for constrained

optimization1

Rodrigo Fontecilla 2
Trond Stethaug 3
Richard A. Tapia *

Abstract. In this paper we develop a general convergence theory for a class of
quasi-Newton methods for equality constrained optimization. The theory is set in the
framework of the diagonalized multiplier method defined by Tapia and is an extension of
the theory developed by Glad. We believe that this framework is flexible and amenable
to convergence analysis and generalizations. A key ingredient of a method in this class is
a multiplier update. Our theory is tested by showing that a straightforward application
gives the best known convergence results for several known multiplier updates. Also a
characterization of g-superlinear convergence is presented. It is shown that in the special
case when the diagonalized multiplier method is equivalent to the successive quadratic

programming approach, our general characterization result gives the Boggs, Tolle and
Wang characterization. . -

1. Introduction. This paper considers a class of quasi-Newton methods for solving
the equality constrained minimization problem:

minimize f (z) (r.1)
subject to g(z) =10
where f :R* = R andg : R®* - R™. :
The augmented Lagrangian L:R"* XR™ XR, — R is given by

L(z\e)= f(z)+g(:t)t)\+—§c-g(z)‘g(x).
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0035 and the Venezuelan government. This paper was presented at the SIAM National Meeting held at
Denver, Colorado, June 1983.

2 Department of Computer Science, and the Institute for Physical Science and Technology, University
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For ¢ equal to zero, the augmented Lagrangian reduces to the standard Lagrangian

Iz N)=/f(z)+g(z)X.

If z. € R* is such that wg (z+) is full rank, then a necessary condition for z. to be a
solution of (1.1) is that there exists \» € R™ such that (z.,X.) is a solution of the non-
linear system

Vs L(zshe,e) =0, (1.2.2)

g(z.)=0. : (1.2.b)

Moreover, in this case A. will be unique. It may be noted that the constant c does not
affect condition (1.2). o

In order to approximate the minimizer z. we consider the Diagonalized Multiplier
Method (DMM), as defined by Tapia [39]. ‘

Given z, ,\, , B, .

For k = 0 Until convergence Do

M 41 ="U (zx ,\x ,Bs) (1.3)
By o = -V, L (2 M 11,0) (1.4)
TEgi =Tk + & (1.5)
By =B (2 M ,Be) - (1.6)

The matrices B in (1.4) and By, in (1.6) are intended to be approximations to the Hes-
sian matrix w2L (z+,h+,c). We call U in (1.3) a multiplier update and B in (1.6) an
approximate Hessian update. Implicit in the formulation of the DMM is the option of
changing U or B at each iteration.

On occasions in the DMM we will refer to a particular choice of quasi-Newton
method for the steps (1.4)-(1.6). For example, diagonalize Newton multiplier method
would mean that the choice for By, in (1.6) is W2L (24 41,2 +1,¢ ); While diagonalized
secant multiplier method would emphasize that the quasi-Newton method (1.4)-(1.6) is
also a secant method.

If B in (1.6) is a secant update (see Dennis and Schnabel [18] for details on these
 methods) then the default choice for y; (the structure of the problem does not suggest a
more natural choice) is the choice given by Tapia [39]; namely

W = Ve L (T i1 41,6 ) = Va L (7 M 41,6 ) - (1.7)

Recall that a secant update requires the satisfaction of the secant equation

Biivsp = u - (1-8)
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In the original formulation of the multiplier method (given independently by
Hestenes [28], Powell [33] and Haarhoff and Buys [8]) the multilier A, was updated only
after z; had been found which minimized L (z,\,¢) in z (satisfied v, L (zx \,c )=0).
The process of finding such an z; was left undefined. Suppose that these unconstrained
minimizations were performed via a quasi-Newton method. Then in terms of (1.3)-(1.6)
the multiplier method amounts to looping through (1.4)-(1.6) an infinite number of times
before returning to the multiplier update (1.3). Of course, in practice such an approach
would be impossible and only a finite number of loops of (1.4)-(1.6) (quasi-Newton steps)
could be taken before returning to the multiplier update (1.3). Tapia [39] formally stated
(1.3)-(1.6) and used the adjective diagonalized to describe this modified version of the
multiplier method which gave the multiplier the same status as the x-variable. He was
motivated by the feeling that in an effective formulation the multiplier X should be
updated as often as the variable z and the two update formulas should be matched or
compatible in some sense.

The following multiplier updates are well-known and appear throughout the litera-

ture:
U(zX\B)=Xx+¢ g(z) (1.9)
Uz \B)=-(ve¢'(z)ve(z))'ve'(z)v] (z) (1.10)
U(z ) \B)=X+(ve'(z)B vyg(z)) g (z) ' (1.11)

U(z\B)=X+(ve'(z)B'vg(z)Ho(z) - ve'(z)B'v.L(z \e)) (1.12)

We call (1.9) the Hestenes-Powell update since it was the update proposed independently
by both Hestenes [28] and Powell [33] when they introduced the multiplier method.
Haarhoff and Buys [8] used (1.10) with their version of the multiplier method. However,
it had appeared in the literature numerous times before it was used by them. We call it
the projection update since it can be obtained as the least squares solution for X of the
linear system w, L (z ,\)==0. The update (1.11) is due to Buys, more will be said about it
later on. Following Tapia [39,40] we refer to (1.2) as the extended problem, since it
involves both z and X\ as unknowns. Fletcher [20] calls Newton’s method on the
extended problem the Solver method. It is well-known that the diagonalized Newton mul-
tiplier method using the multiplier update (1.12) is equivalent to Newton’s method on
the extended problem. It is this equivalence which motivated us to call the multiplier

update (1.12) the Newton multiplier update. For a background on the multiplier method
and related issues see Bertsekas [3].

In the remainder of this introductory section we will accomplish three objectives.
Firstly, we will motivate the choice of the DMM as the framework for our unified theory.
Secondly, we will present a fairly complete historical account of the development of the
convergence theory for quasi-Newton methods for constrained optimization as it relates
to the theory developed in this paper. This historical account will give a prospective to
our contribution in terms of existing results, it will lend support to our reasons for favor-
ing the DMM formulation and finally it is needed in its own right since the field has
advanced significantly in the last 10 years and there is considerable confusion as to the
particular contributions of the various authors. Thirdly, we will briefly describe what the
reader will encounter in the remaining sections of this paper. '



Quasi-Newton Methods For Constrained Optimization

We now motivate our choice for the DMM framework. The DMM using the Newton
multiplier update (1.12) is equivalent to numerous quasi-Newton formulations for prob-
lem (1.1) (see Tapia [40]). These equivalent formulations include a structured quasi
Newton method on the extended problem, the popular successive quadratic programming
(SQP) quasi-Newton method, and a formulation which Tapia calls the structured multi-
plier substitution method. The role of the multiplier update is most prominent in the
DMM. It is less prominent in the extended problem formulation, even less prominent in
the SQP formulation and essentially masked in the structured multiplier substitution
method.

Since the DMM formulation clearly delineates the role of the multiplier update,
when coupled with a good convergence theory it should allow one to determine exactly
what properties a multiplier update must satisfy for a particular application or result.
This is the path that was taken by Fontecilla [21] using the theory developed in this
paper.

The Newton multiplier update (1.12) is the only multiplier update which causes the
DMM to satisfy linearized constraints (see Theorem 10.2 of Tapia [40] and also Fon-
“tecilla [21]). Since the other formulations described above, including the SQP formula-
tion, satisfy linearized constraints it follows that the DMM offers a broader framework
than do the other frameworks. Namely, it allows one to consider algorithms which do
not necessarily satisfy linearized constraints and when linearized constraints are satisfied
it gives an equivalent formulation. We believe that contemporary approaches designed
with global behavior in mind will not necessarily satisfy linearized constraints. This is
certainly true of the trust region algorithm for constrained optimization recently sug-
gested by Celis, Dennis and Tapia {11]. Their algorithm can be described in the DMM

framework. For an interesting class of algorithms which generalize the DMM see Fon-
tecilla [22].

In terms of popularity there is no doubt that the SQP formulation has won over
the DMM formulation. However, in terms of amenability to convergence analysis and
generalization we feel that the DMM may offer distinct advantages.

We would now like to present a fairly complete historical account of the develop-
ment of the convergence theory for quasi-Newton methods for constrained optimization
as it relates to the present work. Convergence theory for algorithms that use an approxi-
mation to the projected Hessian is not of the same flavor as that presented here and will
not be discussed. The reader interested in projected Hessian quasi-Newton methods is
referred to the recent papers by Coleman and Conn [14], Nocedal and Overton [31], Fon-
técilla [22] and Byrd [10].

We are concerned with convergence results for quasi-Newton methods for con-
strained optimization which work with an approximation to the full Hessian with respect
_ to z. Our discussion will center on the following papers: Buys [7], Garcia-Palomares and

Mangasarian (23], Han [26], Tapia [39], Powell [34], Byrd (9], Glad [25] and Boggs, Tolle
and Wang [5]. While our choice of papers is not exhaustive it is much more than
representative and should give a good prospective to the theory presented in this paper.

To begin with the extended problem is a part of the folklore of constrained optimi-
zation theory. The standard convergence theory for Newton’s method can be used to
establish local quadratic convergence in (z,\) of Newton’s method applied to the
extended problem. Furthermore, the standard Broyden, Dennis Moré [6] convergence
theory for secant methods can be used to establish local g-superlinear convergence in
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(z ,\) of a standard secant method applied to the extended problem as long as this par-
ticular secant method does not require positive definiteness of the matrix that is being
approximated, e.g. Broyden or PSB (see Dennis and Schnabel [18] for more details on
secant methods). These facts were all well-known at the time the popular secant updates
for nonlinear equations and unconstrained optimization were being developed. However,
it was generally felt that the extended problem approach was unsatisfactory. Firstly
because there was no underlying unconstrained minimization problem to use for gui-
dance and secondly the popular DFP and BFGS secant methods were precluded due to
the fact that the Jacobian of the full system (Hessian of the augmented Lagrangian with
respect to both z and X) while being symmetric, is necessarily not positive definite. We
mention in passing that it is ironic that many authors taking directions away from the
extended problem (e.g. SQP or DMM approach) either openly or tacitly returned to it
for their convergence analysis. At any rate the stage was set for considerable research
activity to shift to the multiplier methods as soon as they were introduced. After all,
they did contain a fundamental unconstrained minimization problem.

In an enlightening thesis Buys (7] showed that the multiplier method using the
Hestenes-Powell multiplier update (1.9) is the gradient method with step length parame-
ter ¢ on the dual problem. He then proposed the multiplier update (1.11) for use with
the multiplier method since the resulting algorithm would be Newton’s method on the
dual problem. Convergence results followed form standard theory for these two forms of
the multiplier method.

Tapia [39] formally defined the diagonalized multiplier method (DMM) and demon-
strated local g-superlinear convergence in (z,\) of several diagonalized secant multiplier
methods using the Newton multiplier update (1.12) including the DFP and BFGS secant
methods. Various algorithms which could be classified as diagonalized multiplier methods -
had previously appeared in the literature. For example, several authors including Bard
and Greenstadt [2] and Tapia [37,38] considered algorithms which were essentially the
diagonalized Newton multiplier method using the Newton multiplier update (1.12). That
their algorithm was equivalent to Newton’s method on the extended problem was known
to Bard and Greenstadt [2] and to Tapia [38] but not in [37]. Miele, Cragg, Iyer and
Levy [29] had previously proposed the diagonalized gradient multiplier method using the
Hestenes-Powell multiplier update (1.9). They gave no convergence analysis but included
a considerable amount of numerical experimentation.

Byrd [9] considered a generalization of the diagonalized Newton multiplier method
where j, Newton steps were taken on the unconstrained minimization problem before X,
was updated to X\, ;. He proved, among other things, the interesting result that a multi-
plier update, e.g. (1.11), gives local g-quadratic convergence for the multiplier method if
and only if this multiplier update gives local g-quadratic convergence in (z,\) in his
modified form of the DMM for any choice of j; satisfying j; >2. Namely, two Newton
steps on the unconstrained minimization subproblem are sufficient to obtain the optimal
quadratic convergence rate in (z \).

Byrd’s result coupled with the known fact that the diagonalized Newton multiplier
method using the Newton multiplier update gave local g-quadratic convergence in (= ,\)
essentially removed the multiplier method (f.e. any implementation that required a large
number of quasi-Newton steps in the unconstrained minimization phase) from considera-
tion as an effective algorithm and gave further impetus to the DMM.
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About the same time that the DMM was emerging as a viable formulation, the SQP
approach was surfacing as an attractive and viable formulation for quasi-Newton
methods for constrained optimization. Garcia-Palomares and Mangasarian [23] following
Wilson [41], who had presented us with the SQP Newton method (exact Hessian was
used), proposed an SQP quasi-Newton method where the approximation to the Hessian
used in the quadratic term was taken as the upper left-hand n Xn submatrix of a
quasi-Newton approximation to the (n +m )X(n +m) Jacobian of the extended problem,
i.e., the (n +m )X(n +m) Hessian with respect to (z,\) of the (augmented) Lagrangian.
They established various r-convergence results in (z ).

Han [26,27] improved and polished the Garcia-Palomares and Mangasarian formula-
tion by using a secant method to directly approximate the Hessian with respect to z of
the (augmented) Lagrangian, i.e., the n Xn submatrix referred above, and presented us
with the SQP secant methods as we know them today. He established local g-superlinear
convergence in (z ,\) for numerous secant updates including the DFP and the BFGS.

Glad [25] independently also defined the formal DMM. He established local conver-
gence results for the diagonalized BFGS secant multiplier method using the Hestenes-
Powell (1.9), the projection (1.10) and the Newton (1.12) multiplier updates. Specifically,
he obtained local g-linear convergence in (z,)\) for the Hestenes-Powell update, local g-
linear convergence in z for the projection update, and local q-superlinear convergence in
(z ) for the Newton update. While the results for the Newton update had previously
been obtained by Tapia[39], Glad obtained them independently. To our knowledge Glad
[25] was the first to give any convergence results for a secant method for constrained
optimization which was not equivalent to the SQP secant method. His work contributed
significantly to our understanding of the DMM.

All convergence results mentioned above for the DFP or the BFGS secant update
either carried with them the assumption that the Hessian with respect to z of the
Lagrangian was positive definite or the author worked with the augmented Lagrangian
and assumed that ¢ was sufficiently large so that the Hessian with respect to z of the
augmented Lagrangian was positive definite near the solution. Furthermore, Han, Tapia
and Glad all used the Broyden-Dennis-Moré convergence theory for secant methods and
all performed their convergence analysis using a form of the extended problem. It is not
surprising then that their results are essentially the same and in particular they all
obtained gq-superlinear convergence in (z,\) for the diagonalized secant multiplier
methods using the Newton multiplier update or the equivalent SQP secant methods.

Tapia [39,40] considered the convergence rate given by these algorithms for the z
variable alone. Clearly, in general a g-rate in (z,\) implies no more than the correspond-
ing r-rate in z ( or in \). He observed that if in the approximation formula used for the
Hessian (1.6) X\ was replaced by a multiplier estimate which did not depend on X, e.g. the

projection update (1.10), then the g-superlinear convergence rate also applied to the vari-
" able z alone. Glad [25] also observed that if the multiplier update used in the DMM did
not depend on X or ¢, then the convergence result could be stated in z alone. Powell [34]
obtained an r-superlinear convergence rate for his modified form of the SQP BFGS
secant method. He expressed concern over the fact that he had not been able to obtain a
g-superlinear rate in z; but he seemed not to realize that up to this time no one had
obtained a g-superlinear rate in z for the SQP BFGS secant method or any similar algo-
rithm. In the same paper Powell derived a condition which implied 2-step g-superlinear
convergence in zfor an SQP quasi-Newton method. This result fueled the already burn-
ing interest in extending the well-known Dennis-Moré [17] characterization of g-

5
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superlinear convergence of quasi-Newton methods for unconstrained optimization to a
characterization of those quasi-Newton updates which when used in the SQP quasi-
Newton method gave g-superlinear convergence in z.

Boggs, Tolle and Wang [5] answered both of above open questions. Namely, work-
ing with the DMM and the Newton multiplier update (1.12) they derived a characteriza-
tion of those approximate Hessian updates which led to g-superlinear convergence in z.
They then demonstrated the usefulness of their characterization by using it to prove
that the DFP and BFGS secant updates (assuming positive definiteness of the Hessian
- with respect to z at the solution) gave q-superlinear convergence in z without any
modifications as had previously been suggested by Tapia [39].

The work of Han [27], Tapia 39,40}, Glad [25] and Boggs, Tolle and Wang [5] has
greatly influenced the present work. We now describe what the reader will encounter in
the material of the paper and relate this material to the existing work that has just been
described. In Section 2, we list the basic assumptions and standard lemmas that will be
used in the remainder of the paper. We give a formal definition of the notion of bounded
deterioration of approximate Hessian updates used in the DMM. We also describe vari-
ous properties which a multiplier update may posses. These properties will allow us to
determine various convergence results based on the theory developed in Section 3.

In Section 3 we follow the Broyden, Dennis and Moré [6] convergence theory and
develop a unified convergence theory for the DMM. This theory requires that B in (1.6)
be of bounded deterioration in the sense defined in Section 2. The convergence theory
allows us to determine if the use of a particular multiplier update will give local g-linear
convergence in (z ,\) or the stronger result of local g-linear convergence in z alone.

In Section 4 we apply the tools developed in Sections 2 and 3 to the standard mul-
tiplier updates (1.9)-(1.12). We do this as a test and demonstration of the unified theory.
We do not wish to imply that these standard multiplier updates should be used; instead
we feel that the understanding gained from these demonstrations may be beneficial in
the design and analysis of new algorithms. In each case we see that the unified theory
gives results which are as good or better than those that presently exist in the literature.
The convergence result for the Buys (1.11) multiplier update is new (Proposition 4.4). It
is satisfying that our theory (Proposition 4.2) for the Newton multiplier update
(equivalently SQP) matches the Boggs, Tolle and Wang (5] convergence result and is
superior to the convergence results given by Han [26], Tapia [39] and Glad [25].

In Section 5 we derive two characterizations of those update pairs (U,B) where U is
a multiplier update and B is an approximate Hessian update which lead to g-superlinear
convergence in z. These characterizations are Theorems 5.1 and 5.3. We then show that
if U is the Newton update (1.12), then Corollary 5.4 gives the Boggs, Tolle and Wang
characterization. However, we obtain the result under slightly less restrictive assump-
tions than Boggs, Tolle and Wang used. Recently Nocedal and Overton [31] have also
obtained the Boggs, Tolle and Wang characterization under these less restrictive assump-
tions. We emphasize that our two characterization results are for the general DMM and

in the special case that the Newton multiplier update is used we obtain the Boggs, Tolle
and Wang characterization.

-
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2. Preliminaries. Recall that z. is a local solution of problem (1.1) with associ-
ated multiplier .. To simplify our notation we let '

vo(z)=ve, and vg(z.)=vg. (2.1.a)
A= 92L (20 Neyc) (2.1.b)
A, = V,QI (Zt,)\a). (210)

Throughout this paper we will be making the following assumptions:

Al. The functions f and g have second derivatives which are Lipschitz continuous in an
open neighborhood D of z.. ’

A2. 7g. has full rank.
A3. z* A,z > 0 for all 2540 satisfying vgiz =0.
Ad4. A. is nonsingular. |

Assumption A3 is the well-known second order sufficiency condition from con-
strained optimization. Moreover, it can be shown (Buys [7]) that A2 and A3 are
equivalent to asking that %/ (z.,\.) be nonsingular. Assumption Al and the nonsingu-
larity of % (z.,\.) are the standard assumptions made when considering the conver-
gence theory for quasi-Newton methods on the extended problem; and as such are
minimal assumptions. Many of the results that follow could be proved without assuming
A4. However, the generality lost by assuming A4 is not of major concern here.

The following lemmas will play a fundamental role in the analysis presented in the
remaining sections.

LEMMA 2.1. There exists ¢ >0 such that A is positive definite for all ¢ >T. More-

over, for ¢ >t , letting A denote Af, A° denote Af and yg denote yg., we have

-1
(Ac)'=A"1-Algyg [(c -y + vg'A‘IVg] vgtA? (2.2.a)
and
-1

Vet (A)Igg =(c -T)lvet A vy [(c -~y + vg'A'lvg] ; (2.2.b)

so that
(Ac)y! — [I - Ay (vet Ay ) lvg! ]A-l , (2.2.c)
eve'(A°)vg — I, and (2.2.d)
(A°)'vg =0 as ¢ —oo. (2.2.€)

Proof. The first statement of this lemma is standard (see Lemma 1.25 of Bertsekas
[3]). The statements (2.2.d) and (2.2.¢) were known to Glad [25] when he briefly sug-
gested a method of proof. Below we have expanded Glad’s suggested proof to the point
where it can be followed with only a fair amount of effort.
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Start by writing
A = A + (e -T)ygwvyet . (2.3)

By setting A equal to our A, U=(c-¢)yg and V=vwyg in equation (13) on page 50 of
Ortega and Rheinboldt [32] (Sherman-Morrison-Woodbury formula) we obtain (2.2.a).
Multiply (2.2.a) on the left by ¢ and on the right by g and take the first expression
of the form wg'A-'yg and write it as vg* A-'vgB~'B where B=(c-¢) ' [+vyg‘Alyy.
- Now by factoring out wg*A-'ygB™! from both terms we arrive at (2.2.b). The expres-
sions (2.2.¢)-(2.2.¢) are direct consequences of (2.2.a) and (2.2.b). [

In this paper we use |.| to denote both the I, vector-norm and the matrix norm
that it induces and we use || . || to denote an arbitrary but fixed matrix norm. However,
since all norms in a finite dimensional space are equivalent we know that for the norm
|| . || there exist u,n>0 such that for all A€R"*" we have

slAall<]Aal<allA]l. (24)
The following lemma can be found in Dennis and Schnabel [18].

LEMMA 2.2. Assume F:R®* — R™ 1s differentiable in the open convez set D, and
suppose that for some w* in D and all weD

|IF' (w)-F' (w*)] < K |w - w*]. (2.5)

for a positive constant K. Then for each v andv in D,

|F(v) - F(u)~F (w*)(v - u)| < K max{lv — w*|,Ju —w*|}|v —u]. (2.6)

Moreover, if F' (w*) is invertible, then there is an e€>0, a>0 and >0 such that
max{|v - w*|,Jv - w¥|}<e implies that v and v belong to D and

alv —u | < |F(u)-F) <Blv -u]. (2.7)

The following lemma was first stated formally by Han [26]. It was used implicitly
by Tapia [39,40], Glad [25] and Boggs, Tolle and Wang [5].

LEMMA 2.3. For each fized value of ¢ there exist positive constants K, and K, and
an e(c )>0 such that for all \éeR™ and for any u ,v satisfying o(u ,v)<e(c ) we have

[ L (v N\ e ). L(u,\c)Afi{v-u)|< [Kla'(u 0 K o hA-X .| ]Iv-—u | (2.8)

where o(u ,v )=max{|v - 2. |,Ju - 2|}~

Proof. Let D in Al play the role of D in Lemma 2.2 and for a fixed ¢ let

Vs L (., X« ,c) play the role of F(.). We know from assumption Al that there exists K ;>0
such that

Iv,L(v,)\.,c)-v,L(u,)\.,c)lSKllv —ul (29)

for all v ,v€D . A straightforward calculation gives

VeL(vNe)-v:L(uNe)-Adv —u) : '
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=, L{vXe,c)-v,L(u Xe,c)-Al(v — 1)

+ [vo()-vole) Jo-x0). | (2.10)

Now using the triangle inequality on (2.10) and both (2.6) and (2.7) of Lemma 2.2 we
obtain (2.8) with K, given by 8 in (2.7) and ¢(c ) given by Lemma 2.2. ]

LEMMA 2.4. There ezist positive constants K3 and K ; such that for all vER™
Kajv| > |vgev| > Kyv|. (2.11)
Proof. Since g, is full rank wgéwyg. is nonsingular and

v=(vgive. ) 'vei(veev).

The result now follows by choosing

Ky=|vg.| and K, =|vgivg.)'vgél?.

The following notion plays a fundamental role in the convergence theory developed
in the next section. It is an extension to constrained optimization of the notion of
bounded deterioration originated by Dennis [16] and used extensively by Broyden,
Dennis and Moré [6)].

Consider the pair (U ,B) where U is a multiplier update and B is an approximate
Hessian update (see (1.3) and (1.6)). Also consider ¢ >0 such that A¢ is nonsingular. Sup-
pose that U and B are-defined in a neighborhood N=N;XNy;XNj of (z.,1.,A’) where
N g contains only nonsingular matrices.

DEFINITION 2.5. The update B is said to be of bounded deterioration (at AS with

respect to U ) if there ezist non-negative constants a; and ap such that for each
(z ,\,B)EN and for

A\ = U (z,\,B) (2.12.2)
z,=12 - By, L(z \c) (2.12.b)
B, =B (z \B) (2.12.¢)
we have

| B.-A%||< [1+al'a(z 24 ]u B-Af |[+ag(z ,24) (2.13)

- with
z =(z ), 2z, = (z4,0;) (2.14.a)

and
o(z,z4) = max{|z —z. |,|z 4=z« |,| Mo [, N5 |} . (2.14.b)

Moreover, we say that the multiplier update U is z-dominated (at As) if there exists a
non-negative constant ¢(¢ )<1 such that for each (z \,B)EN we have



Quasi-Newton Methods For Constrained Optimization

(A2 g (g = X0l < Bz - 2] - (2.15)

Furthermore, we say that the multiplier update U is weakly z-dominated (at AS with
respect to B ) if

(A9 wg.] < 1 (2.16.a)

and there exists a non-negative constant ¢(c <1 such that for each (z \,B)EN we have

U (24008 4) = No| < o(e )max(hy ~ Xeflz - 2.]) . (2.16.b)

Finally, we say that the muliiplier update U 1is consistent if it is continuous in N and for
all BEN ; we have

As =U(I:,X:,B) . (217)

Observe that (2.2.€) of Lemma 2.1 says that (2.16.a) will be satisfied for ¢ sufficiently
large.

3. Local convergence. This section is devoted to the study of the convergence of
the sequences generated by the DMM. Recall assumptions Al and A2 of Section 2 and
Definition 2.5. The proofs of the following two theorems will follow Broyden, Dennis and
Moré (6] as closely as possible.

THEOREM 3.1. Consider the update pair (U ,B ). Suppose that U is z-dominated at
A§ with constant ¢=¢(c) and B s of bounded deterioration at AS with respect to U .
Then for each r €(¢,1), there ezist positive ¢, , €, and § such that for

2o —2e] < €, Mo =Xe| <€y, endl| B, —AS|| <6

the sequence {(z; )\ )} generated by the DMM (1.8)-(1.6) is well defined and converges to
(z+ ,Xs). Furthermore, for all k >0 we have '

|Zes1—2e] < 1 |7 - 24, (3.1)

and {B, } and {B,™'} are bounded.

Proof. Choose positive ¢, ,e, and 6 so that | z-2.|<e,, I\ |<e, and || B-AF [|<26
imply that (z ,\,B) is contained in the neighborhoods qualifying U to be x-dominated
and B to be of bounded deterioration. Further, restrict ¢, so that ¢, <e(c) where ¢(¢) is
given by Lemma 2.3. Let K, and K, also be given by Lemma 2.3, let K, be given by
Lemma 2.4 and let a; and a, be as in (2.13). For the norm || . ||, let n be given by (2.4).
Choose 7,>|(A¢)Y| and 1,>]A4|.

Further restrict ¢, ,¢, and § so that

(20’16 + ag) ¢

P < .
o S 8, | ' (3 »2)

10
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n(l+r) [(Kr*'}'{z'me1 $es + (1+¢)2'75] < r-¢, (33)
and

€x < min(e, ,72K{1 ¢§,) . (3.4)

Now suppose that |z, -z.|<e,, |A\,-)1+|<ey and || B,-A¢ ||<6. Then |B,-Af|<né<276 and
since (3.3) implies that

29 (1+r )6 < r, (3.5)

the Banach Perturbation Lemma [32] gives
CIBA S (e - (3.6)

A straightforward argument gives

|2y - 2 |<|B, 7|95 L (2, A1y )=V L (24 ,Mpy¢ }-AHz, —2. )|

+ |B,Y||B, -A#||z, -2+ | + |B, T AS | (A8) g, (M-he )] . (3.7)

The triangle inequality gives

IBo—lA'cl -1 S l I- Bo-lA‘cl S IBo-l“Bo = ‘cl; (38)
so it follows that
|B,7lAS| < 1+ (147 )20 . (3.9)
Also,
[ASPK ahy = Mo | < (A 9. (M = X0 ); (3.10)
so 1t follows that
A= 2o | < K Bz, — 3. (3.11)

Now using Lemma 2.3 with v =z, and v=z., (3.9) and (3.11) we obtain from (3.7)
|21~z | <m(1l+r) [(K1+K2'72K[1‘¢)e, + (14-¢)2n6 ]l% ~z. |+ @lz, ~ 2. ] . (3.12)

| Using the bound (3.3) we see that (3.12) leads to |z,~z.|<r|z, - z.]|. It follows from (3.4)
and (3.11) that [A\-X.|<e,.

We complete the proof with an induction argument. Assume that || B, -A7 || <26,
ze 41z <7 |z —z. | and [N yy-2e|<ey for k=l,.,m-1. Observing that (3.4) implies in
(2.14.b) that o(z,z.,)<e,, we obtain from (2.13) that

|| By 41-A¢ ||-|] Be-Af || <20 8¢, r* +age, r¥ . (3.13)

11
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By summing both sides of (3.13) from k=0 to & —m -1 we obtain

l| Bm — A& || < || B, - A || + (246 + ag)— (3.14)

(1+ )’

which by (3.2) implies that || B,-Af ||<26. To complete the induction we need to show

that |2, 412+ |<r |z, -2+ | and |\, 41-X¢|<€,. These inequalities are established in exactly

the way we established them for m =0. The boundedness of {B;} and {B;} follows
directly from the inequalities established above. []

THEOREM 3.2. Consider the update pair (U ,B ). Suppose that U is consistent and
weakly z-dominated at Af with respect to B with constant ¢(c) and B s of bounded
deterioration at Af with respect to U. Let ¢—max(¢(c)|(A°)’1vg |). Then for each
r €(¢,1) there exist positive ¢ and § such that for

|z, —ze| <€ [N\ =Ae| <€ and||B, -AF|| <6

the sequence {(z; M)} generated by the DMM (1.8)-(1.6) is well-defined and converges
to (z+,\«). Furthermore for all k >0 we have

max(|zy 41 = 2+ [Me+2 = Ao 1) £ v max(jzy - 2|, he g1 = X ]) (3.15)

and {B, } and {B,'} are bounded.

Proof. Choose positive ¢ and § so that |z-z.|<¢, I\-M.|<¢ and || B-Af||<26
imply that (z,\,B) is contained in the neighborhoods qualifying U to be weakly x-
dominated and B to.be-of bounded deterioration. Further restrict ¢ so that ¢ <e(c)
where ¢(c ) is glven by Lemma 2.3. Let K, and K, also be given by Lemma 2.3 and let o,
and a, be as in (2.13). For the norm || . ||, let 5 be given by (2.4). Choose v>|(4¢)™|.

Relying on the consistency of U choose e<¢ and §<¢& so that
[U(z X \B)-X2.|<ce (3.16)

whenever | z-z.|<e¢, |\-).|<e and |B-A¢|<é. Further restrict ¢ and é so that

(20,6 + 0’2)(—1_{',—) <, (3.17)

and

A1+r) [(K i+ e + 2061+9) | S v - 6. (3.18)
Now suppose that | z-z.|<e, M-M.|<e and || B-A¢ ||<é. Then |B,-Af|<nb<2né and
since (3.17) implies that

29(1+r s < r, (3.19)

the Banach Perturbation Lemma [32] gives

1B < (1+r) 7. (3.20)

t

A straightforward argument using (3.7)-(3.9), Lemma 2.3 with v =z, and v=az. and

12
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(3.18) gives

|2y~ 2| < 7(1+r)[Kle + 2r)5]|z, - 24|

oL+ )y - e+ [L+ (1++ 1208 |¢fs - o]

5{7(1+r ) [(K1+K2)e+2175(1+¢) ]+¢ }max(|z, -zs |,[A=Xe])

< r max(|z, -z« |,|\=X. |) (3.21)

From the definition of weakly x-dominated we have

IXQ - N | _<_ ¢ ma.x(]a:, ~Zs» I,'Xl—ko l) . (322)

Finally, (3.21) and (3.22) show that (3.15) and
- |$k+1 - x,| S €’ and lkk+2 - )\:I s C' (323)

hold for k=0. That (3.15) and (3.23) hold for arbitrary k >0 can be established by
induction in a similar manner. [

Notice that an x-dominated multiplier update leads to the g-linear convergence of
{(ze 2&)} and {2 } but not {X\, }; while a weakly x-dominated update leads to the q-

linear convergence of {(z; \;41)} but not {z; } or {\; }. Of course in both cases we will
have r-linear convergence of {z; } and {); }.

4. A Demonstration of the Convergence Theory. In this section we apply the
convergence theory developed in Section 3 to the four standard multiplier updates given
by (1.9)-(1.12). As stated in the introduction we do this more as a test and demonstra-
tion of the unified theory than as a statement about the updates themselves.

. In what follows we will be requiring B to be of bounded deterioration at A¢ with
respect to the particular multiplier update in question. Implicit in the work of Han [26],
Tapia [39], Glad [25] and Boggs, Tolle and Wang [5] is a proof that the Broyden and
PSB secant updates and the DFP and the BFGS secant updates in the case of positive

. definite A are of bounded deterioration for any particular update. See in particular the
comments in the proof of our Corollary 5.5.

PROPOSITION 4.1. Given r €(0,1) there exists ¢ (r )>0 such that for each ¢ >c(r)
we can find a neighborhood of (z: ,\.,A¥) so that in this neighborhood the projection mul-
tiplier update (1.10) is z-dominated with constant ¢(c )<r . Hence the DMM using this
multiplier update and ¢ >¢ (r) is locally convergent and satisfies (8.1).

Proof. We will give the proof for any consistent update which does not depend on
¢ or X\ and has continuous partial derivative with respect to z, since it is essentially the

13
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same as the proof for the special case (1.10).
Choose ¢(r)>¢ in Lemma 2.1 so that AS is invertible. By consistency and the
mean-value theorem we have

(A5719 9. (g = Xo)] = (42w g0 [U(2,B) - U (22,B) |
< (459 9. 17 U (0 +0(z —z2),B )|z - 2. (4.1)

for some 6€(0,1). The proof now follows from (2.2.e) of Lemma 2.1 and the continuity of
v.U(z,B). [

A proposition exactly like Proposition 4.1 can be proved for the Newton multiplier
update (1.12). However, the Newton update does not require large ¢. In fact we have
arbitrary good local linear convergence with ¢ =0. Recall that A. denotes w2 (z. ).).

PROPOSITION 4.2. Given r €(0,1) there exzists a neighborhood of (z. )\.,A.) such
that the Newton multiplier update (1.12) is z-dominated with constent ¢<r. Hence the
DMM using this multiplier update and ¢ =0 is locally convergent and satisfies (8.1).

Proof. A straightforward calculation shows that U (2 ,\,B) as given by (1.12) is con-
sistent and independent of A\. So we can write

X+—Xc =U($,)\,B)-k’ =U(3’,)\a,B)—-U(Zc,)\c,B). (42)

Differentiating U (2 ,\.,B) with respect to z at z =z. gives
ViU (2. Xs ,B) = (vgiB v, ) vgé [I - B7lA, ] . (4.3)
From (4.3) we see that w,U (z,,\.,A,)=0. Using the mean-value theorem, (4.2) and
(4.3) we obtain
At =Xe| £ |9:U (zs+6(z -2, ), 7+ ,B)||z - 24| (4.4)

for some 6g(0,1). The proposition now follows by observing that by continuity the
derivative term in (4.4) can be made arbitrarily small for z near z, and B near A.. []

PROPOSITION 4.3. Given r €(0,1) there ezists ¢ (r)>0 such that for each ¢ >¢(r)
we can find a neighborhood of (z. 1. ,A¥) so that in this neighborhood the Hestenes-Powell
multiplier update (1.9) is weakly z-dominated with constant ¢(c )<r. Hence the DMM
using this multiplier update and ¢ >c¢ (r) is locally convergent and satisfies (3.15).

Proof. Consider U given by (1.9). Write A\,,=U (z,,)\,,B.). For i=1,..,m there
exist 6; €(0,1) such that

0: (24) = gi (20) = Vi (2o +6; (z4-2.)) (24 - 2.) .

Let

V= [Vﬂ (ze +0i(z4-22)), - - ., TIm (20 4+6; (2 4-20)) ],
so that g (z,)-g(z¢)=vg4 (2 ,~2.). We can now write, since g (z.)=0,

14
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Apg=Ae=X,-Xs+c¢ [g (z4)-9(z.) ]=)\+-—)\. +evgh(z4-ze) . (4.5)

A straightforward calculation shows that

T,-2s = [I - BlA¢ ](z —z.)—B"Vg(z)(x+—X.)
_p- [V,L (2 o) - VoL (2o he,e) - Az - z.)] (4.6)

Now using Lemma 2.2 with F(z)=wv, L (z,\.,c), v =z, and v=z, and combining (4.5)
with (4.6) we obtain K such that

Pas =2 S -¢ v9iBvg (2 )Is - e |

+eloos | [I - BP4d + Ky 1B - | Jlz - 2] (4.7)

The proposition now follows from (4.7) by first choosing ¢ (r) large guided by (2.2.d) of

Lemma 2.1. Then choosing (z,B) close to (z.,Af) and if needed further restricting the
choice of z. []

PROPOSITION 4.4. Given r €(0,1) there exists ¢ (r)>0 such that for each ¢ >c¢(r)
we can find a neighborhood of (z. X\, ,A$) so that in this neighborhood the Buys multiplier
update (1.11) is weakly z-dominated with constant ¢(c )<r. Hence the DMM using this
multiplier update and ¢ >c¢ (r) is locally convergent and satisfies (8.15).

Proof. Exactly the same argument used in the proof of Proposition 4.3 will lead us
to an expression of the form (4.7) with the factor ¢ replaced by (vg(z4) B vy (z4)™.
The proof now follows by choosing ¢ (r) large enough so that |(A£)'¢g.|<r and then
choosing (z ,B) sufficiently close to (z.,A’) so that the appropriate factors will lead to a
#(¢ ) which is less than 1. []

The proofs given above suggest that for the Hestenes-Powell update ¢ must be
very large, for the projection update and the Buys update ¢ should be of the same order
and need not be particularly large and for the Newton update ¢ =0 works fine.

5. Superlinear convergence. In this section we will develop a theory for studying
the g-superlinear convergence of the sequence {z; } generated by the DMM. This theory

is closely related to the theory for unconstrained optimization. Recall that the sequence
" {2; } is g-superlinearly convergent to z. if

2k 41 =~ 2 | _

—0. (5.1)

k — o0 |zk —:L'ol

According to the Dennis-Moré {17] characterization theory for quasi-Newton methods for
unconstrained optimization in the case of a quasi-Newton method applied to the uncon-
strained minimization of the functional L(z \.,c) (equivalently the idealized DMM
where the choice for X\, is X\.), a necessary and sufficient condition for g-superlinear

15
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convergence is

B, - AZ ~
lim 1B -~ Ada | =0, (5.2)

k — o0 »|8k|

assuming convergence of the iterates.

It seems reasonable that (5.2) will play an important role in our characterization of
g-superlinear convergence in constrained optimization and that by itself will not imply
- g-superlinear convergence. In fact, it is not surprising that the additional condition that
is needed is that the multipliers A, converge to . sufficiently fast, i.e.

" Ak 41— el
im ———————— =

R e oy 0. (5.3)

Recall that the sequences {z; } and {)\,} are generated by the DMM (1.3)-(1.6). In addi-
tion to assumptions Al-A4 we will assume

Ab. The iterates z; € D,-and klim T == Ze.
— 00

The following is our first characterization of g-superlinear convergence of the sequence
{:c,, }

THEOREM 5.1. Any two of (5.1), (5.2), or (5.8) imply the third.

Proof. From (1.4) we can write

- VsL(zk;“{’x:)c ) == [VzL (zk+h)‘”c ) - V:L(zk ;X'rc)'—A'c Gk]

+ng()\k+1—)\o)+(Bk —Aa‘) 8 . (54)
Let F(z)=w,L(z,M\+,c). Then F(z.)=0, and F' (z) = Af. From Lemma 2.2 there
exist positive f and a such that
Blaesr—ze| 2 |9: L(2s1he e )| 2 a|2g 4y - 24 (8.5)
for k sufficiently large. Also from Lemma 2.3 there exist a positive constant K, such
that
|92 L (24137 ,6) =~ Vo L (2 Ao e ) - Af 8, | < Koz 2 4)l8e | - (5-6)
Now by dividing (5.4) by |s:| and observing (5.6) we see that any two of the following
three statements implies the third

'Vz L (zk +1’X‘ y€ )I

kll_l.nco ™ = 0 (5.7)
Ae41 = Ao
lim AYEGen =X (5.8)
k= o la |

16
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By - A '
i B Al » (5.9)
E = oo fox | '

Inequality (5.5) shows that (5.7) is equivalent to

. |2k +1 — 24|

A fairly straightforward argument using the triangle inequality can be used to show that

(5.1) is equivalent to (5.10). Lemma 2.4 shows that (5.8) is equivalent to (5.3). Finally,
(5.9) is exactly (5.2). [

Our second characterization of g-superlinear convergence of the sequence {z; } will
use the projection operator onto the tangent space of the constraints, i.e.

P(e)=1-v5()[vst (e)os(e) | o' (o).

Let P. = P(z.), and P, = P(z,). Before stating the next theorem we need a technical
result.

LEMMA 5.2. Let H, : R* — R" be a function defined by
H (z)=P(2)v:l(z ) e) + ¢ Vgeg(z)

for z € D. Then H, is continuously differentiable inD,
o H,(z+) =0, (5.11)

and

H, (z:) = P:e Ae + ¢ vg.vgt . (5.12)

Moreover, if ¢ 5% 0 then H, (z.) is nonsingular.

Proof. From assumptions Al1-A4 we have that H, is continuously differentiable in
D, and (5.11) holds. By differentiating H, and evaluating H, at z. we get (5.12). The
nonsingularity of H, (z.) is due to the following fact. Let d £ 0 and

(PtA¢+C Vi vg:‘)d =0,

Since g, has full column rank we have

P. Avd =0 and <wgid =0.

Therefore, P, d = d and d*A.d = 0, which is a contradiction since d* A.d > 0 for all
d such that vgfd =0. []

THEOREM 5.3. A necessary and sufficient condition for {z,} to converge g-
superlinearly to z. s

17
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|Pe (Be — Ae)a | _

i 0 .
R ™ ’ (5.13)
and
-+ t
lim (%t Vsl (5.14)
k — o0 |6k I
Proof. From (1.4) we have v
) By & + VoL (zk Mes1,c) =0
hence

-V L(zi Ms1e)=Bi 8 + Vo (Ney1— X))

Multiplying our last expression by P, and observing that P, v7g, =0 we obtain
PyBysp + P l(z,2e)=0.

Adding on both sides — H, (z; ;) yields
~H (241) =Py Be gy ~ [He (zi 1) - He (m )] - ¢ Vge0s.

Using (5.12) we obtain
~ H, (2441) = ~ [H, (ze 1) - H. (2 ) - H,' (2+)8:]
o veeloe + vgia]
+ (Py - P.)A. s

+ Pk (Bk —-A. )dk . (515)

From Lemma 2.1, and Lemma 5.2 there exist for ¢ £ 0, 8 > a > 0 such that
Blzes1—2zo| 2 |He (T sr)l 2 @ lzk+l -z, | (5.16)

for k sufficiently large. Also from Lemma 2.3 there exists a positive K, such that

|H, (24 1) = H. (2:) - H.' (z2)ex | € K10(z 70 41)l | - (5.17)

Consider the condition

H,
i el o (5.18)
k — oo |8k‘

By (5.16) we see that (5.18) is equivalent to

. | +1 7 z. |
lim ————

=0 5.19
koo e (5.19)

18
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which (as argued in the proof of Theorem 5.1) in turn is equwalent to (5.1) and gq-
superlinear convergence.

Assume (5.13) and (5.14). Divide (5.15) by |s;|, recall (5.17) and take limits to
obtain (5.18). This establishes the g- superlinear convergence of {z, } to z..

Let us now assume (5.1). We first argue that this assumption implies (5.14). To see
this we write

g + Ve = - (96 41— 0& - Vﬂlfﬂ:) + (9k+1 - o) - (5-20)

Dividing (5.20) by |s |, calling on Lemma 2.2 to bound the first term on the right-hand
side of (5.20) and the mean-value theorem to bound the second term we have

+ ) T -z
lim 9% V 0k 8 | <K lim |2& 41 o
k — o0 |8k ' k — o0 |6k l

(5.21)

for some positive constant K. If now recall the fact that (5.1) is equivalent to (5.19) we
see that (5.21) implies (5.14).

We are assuming (5.1) holds or equivalently (5.18). We have established (5.14). This

means that if we divide (5.15) by ls, | and recall (5.14), (5.17) and (5.18) when taking lim-
its we obtain (5.13). []

It is of considerable interest to see what Theorem 5.3 gives when the multiplier
update is the Newton update (1.12). Recall that in this case the DMM is equivalent to
Successive Quadratic Programming. Theorem 10.2 of Tapia [40] says that the DMM

usmg the Newton multiplier update satisfies linearized constraints, i.e., (5.14) holds. This
gives us the following corollary to Theorem 5.3.

COROLLARY 5.4. Let the sequences {z, } be generated using the DMM (1.8)-(1.6)
with the Newton multiplier update formula (1.12). Then a necessary and sufficient condi-
tion for {z; } to converge g-superlinearly to z. is

i |Pi (Br — As)s |
im

ko | |

=0 (5.22)

Corollary 5.4 is the Boggs, Tolle and Wang [5] characterization theorem discussed
in Section 1.

The following Corollary says that the most popular secant updates, Broyden, PSB,
DFP and BFGS, which are known to give local g-superlinear convergence in the case of
unconstrained optimization give local g-superlinear convergence in z in the case of con-
strained optimization provided one uses the Newton multiplier update.

By using an obvious weighting and the infinity norm it is not difficult to see that if
" one obtains g-superlinear convergence in z using an x-dominated multiplier update, then
g-superlinear convergence in the pair (z ,\) follows. The converse is not necessarily true.

The fact that the DMM using the Newton update, equivalently SQP, gives g-
superlinear convergence in the pair (z ,\) was established by Han [26], Tapia [39] and

- Glad [25]. That one also obtains g-superlinear convergence in z alone was established by
Boggs, Tolle and Wang [5].

COROLLARY 5.5. Consider the DMM using the updates U and B where U is z-
dominated and B is either the PSB, the DFP or the BFGS secant update. Assume that in
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the case of DFP and BFGS secant updates the matriz AS is positive definite. Then the
DMM 1is locally g-linearly convergent in z. Moreover, if U is the Newton multiplier
update then we also have ¢q-superlinear convergence in z.

Proof. Implicit in the works of Han [26], Glad [25], Tapia [39] and Boggs, Tolle and
Wang {5] for the Broyden, PSB and DFP secant updates is an inequality of the form

| 1Bon =421 | < [tao(ama) |1 1B - A2 |
+ Bro(zi i +1) + Bolde 4 = Mo (5.23)

where o;>0, ,>0 and B8,>0 and as before

o(z 2 41) = max{|zy 4, ~ 2o |,|z — 20 |} .

Now using the assumption that the multiplier update U is x-dominated we can write
(5.23) as

| | Besr A% | < [l+alo'(z,,,zk+1)]| | B, - A |

+($k »Tk +1) - (5.24)

From Proposition 4.2 we have local g-linear convergence. Now, an argument identi-
cal to the one used by Broyden, Dennis and Moré [6] can be used to establish

o B, - Af ‘
i (B ADul (5.25)

k — o0 Ia,,I

By observing that P, g, =0 and |P; |=1 we get
|Py(Be — As)ap | < [P (B — Af)or | + ¢ |wg.v9s - var voillal - (5.26)

Dividing (5.26) by |s; |, taking limits and using (5.25) we get (5.22).

The proof for the BFGS update requires one to work with the inverse update. The
proof is then essentially the same as that for the DFP (see Broyden, Dennis and Moré€
[6)). I

It is of interest to emphasize that the DMM using the projection multiplier update
and the secant updates listed above satisfies (5.25) but does not lead to superlinear con-
vergence. This fact should enhance the appreciation for Theorem 5.3.
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